

Timers
switch according to internal program in real time

Minia

SUMMARY OF MODELS

Monitoring relays switch depending on monitored physical quantity						
Type	MMR-U3 MMR-X3	MMR-HL	MMR-T1	MMR-T2 MMR-TD	RLP	5SV8
Rated voltage U_{C}	AC 230 V	AC 230 V	AC 230 V	AC 230 V	-	AC 230 V
Arrangement of contacts	001	001	001	200	10, 01	001, 002, 40
Operating voltage of contact	AC 250 V	AC 230 V				
Operating current of contact	8 A	16 A	8 A	16 A	16 A	6 A
Monitored quantity	Voltage	Level	Temperature	Temperature	Current	Residual current
Function	- Overvoltage - Undervoltage - Phase failure - Phase sequence *) - Asymmetry *)	- Liquid drawing off - Liquid filling	- Motor protection - Local reset - Remote RESET - Auto reset	- From $-25^{\circ} \mathrm{C}$ - Up to $+95^{\circ} \mathrm{C}$ - 2 channels	- Disconnectio at reach of: $\begin{array}{r} 5 \div 15 \mathrm{~A} \\ 10 \div 28 \mathrm{~A} \\ 26 \div 63 \mathrm{~A} \end{array}$	- Indication at reach of: $0.03 \div 30 \mathrm{~A}$ (adjustable)

${ }^{*}$) only X3 design

Stair switches and multiple-function time relays switch according to set function and time

Type	MQA	MQB	MQC	MCR-MA	MCR-MB	MCR-TK
Rated voltage $U_{\text {c }}$	AC 230 V	AC 230 V	AC230 V	AC/DC $12 \div 230 \mathrm{~V}$	AC/DC $12 \div 230 \mathrm{~V}$	AC/DC $12 \div 230 \mathrm{~V}$
Arrangement of contacts	100	100	100	001,003	001,003	001
Operating voltage of contact	AC250 V	AC250V	AC250 V	AC 250 V	AC 250 V	AC 250 V
Operating current of contact	16A	16A	16 A	8 A	8 A	8 A
Time setting	$0.5 \div 10$ min	$0.5 \div 10$ min	$3 \div 60$ min	$0.15 \div 100 \mathrm{hr}$	$0.15 \div 100 \mathrm{hr}$	$0.15 \div 10$ days
Function	Stair switch	Stair switch	Stair switch	Time relay	Time relay	Timing relays
		- extension of time 4 times by holding the push-button for $>$ 1s	- premature switching off by pressing the push--button	-9 functions	-18 functions	- adjustable mark--to-space ratio

Dimensions

RPI-16-001-...

RPI-08-002-...

Diagram

Installation relays RPI-16...

- For switching of electrical circuits by application of control voltage on the coil.
- For control of electric appliances up to 16 A - electric boilers, convection heaters, water-heaters, storage heaters and also low power lighting circuits.
■ There is ensured such electrical isolation between the control circuit (coil) and main circuit (contact) as
it is between inlet and outlet lead of the safety transformer.
- Light indication at contacts closing.
- Noiseless switching.
- Contacts: 1 make-and-break.
- Control voltage: $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}$.

Arrangement of contacts ${ }^{1)}$	Control voltage U_{c}	Colour of indication	Type	Order code	Number ofmodules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
001	AC/DC 24V	red	RPI-16-001-X230-SC	0 EZ:43251	1	0.070	1
	AC 230 V	green	RPI-16-001-X230-SE	0 EZ:43250	1	0.070	1

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Installation relays RPI-08...

- For switching of electrical circuits by application of control voltage on the coil.
- For control of electric appliances up to 8 A - electric boilers, convection heaters, water-heaters, storage heaters and also low power lighting circuits.
- There is ensured such electrical isolation between the control circuit (coil) and main circuit (contact) as it is between inlet and outlet lead of the safety transformer.
- Light indication at contacts closing
- Noiseless switching.
- Contacts: 2 make-and-break.

Control voltage: AC/DC $24 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}$ (X230).

- Contacts: 3 make-and-break.

Control voltage: AC $24 \div 230 \mathrm{~V}, \mathrm{DC} 24 \div 220 \mathrm{~V}$ (UNI).

Arrangement of contacts	Control voltage U_{c}	Colour of indication	Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package [pcs]
002	$\mathrm{AC/DC24V}$	red	RPI-08-002-X230-SC	OEZ:43253	1	0.070	1
	AC 230 V	green	RPI-08-002-X230-SE	OEZ:43252	1	0.070	1
	$\mathrm{DC} 24 \div 230 \mathrm{~V} \div 220 \mathrm{~V}$	red	RPI-08-003-UNI-SC	OEZ:43255	1	0.070	1

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

RPI-08-003-...

INSTALLATION RELAYS RPI

Specifications

Type			RPI-16-001-X230	RPI-08-002-X230	RPI-08-003-UNI
Standards			EN 60669-2-2	EN 60669-2-2	EN 60669-2-2
Approval marks			(5) C C EHI	(5) C C EHL	(5) C C EHI
Main circuit (contact)					
Arrangement of contacts ${ }^{1)}$			001	002	003
Rated operating voltage/current	U_{e} / I_{e}	AC-1	$250 \mathrm{~V} / 16 \mathrm{~A}$	$250 \mathrm{~V} / 8 \mathrm{~A}$	$250 \mathrm{~V} / 8 \mathrm{~A}$
		DC-1	24V/16A	$24 \mathrm{~V} / 8 \mathrm{~A}$	24V/8A
Max. switched power		AC	4000 VA	2000 VA	2000 VA
		DC	384 W	192 W	192 W
Min. voltage/current			DC5V/100 mA	DC5V/100 mA	DC5V / 100 mA
Switched power of relay		AC-3	1 kW	200 W	200 W
		AC-5a	$288 \mathrm{~W}(\cos \varphi=0.8)$	-	-
		AC-5b	1 kW	200 W	200 W
Indication of closed contacts		RPI-...-SC	red LED	red LED	red LED
		RPI-...-SE	green LED	green LED	green LED
Mechanical endurance			20000000 operating cycles	5000000 operating cycles	5000000 operating cycles
Electrical endurance			AC 50000 operating cycles, DC 30000 operating cycles	100000 operating cycles	100000 operating cycles
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm	0.5 Nm
Control circuit (coil)					
Rated voltage	U,	terminals $\mathrm{A} 1, \mathrm{~A} 2$	AC/DC 24 V	AC/DC 24 V	AC $24 \div 230 \mathrm{~V}, \mathrm{DC} 24 \div 220 \mathrm{~V}$
		terminals A2, A3	AC 230 V	AC 230 V	-
Input powerat $U_{\text {c }}$		AC24V	0.31VA	0.30 VA	1.00 VA
		DC24V	0.34 W	0.34 W	0.82 W
		AC 230 V	3.24 VA	3.45 VA	1.15 VA
		DC220 V	-	-	0.92 W
Rated frequency	f_{n}		50 Hz	50 Hz	50 Hz
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm	0.5 Nm
Other data					
Mounting on "U" rail according EN 60715 - type			TH35	TH35	TH35
Degree of protection			IP20	IP20	IP20
Ambient temperature			$-20 \div+55^{\circ} \mathrm{C}$	$-20 \div+55^{\circ} \mathrm{C}$	$-20 \div+55^{\circ} \mathrm{C}$
Working position			arbitrary	arbitrary	arbitrary

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Minia

[^0]| | | | | - They are suitable for application in SELV and PELV circuits - sufficient insulation is provided between the circuit breaker and the auxiliary switch..
 - Width: 9 mm .
 - AC-15, AC-21: $\mathrm{I}_{\mathrm{e}}=6 \mathrm{~A}, \mathrm{U}_{\mathrm{e}}=250 \mathrm{~V}$. | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | Type | $\begin{aligned} & \text { Order } \\ & \text { code } \\ & \hline \end{aligned}$ | Number of modules | Weight
 [kg] | Package
 [pcs] |
| | | | | | | | PS-MIG-1100 | 0EZ:43208 | 0.5 | 0.030 | 1 |

Central control block OD-MIG-C01

- It enables central control of relays.
- It contains a switch and diodes, which ensure correct transfer of the signal to the impulse relays - see the diagram and connection examples.
- Installation: by means of plastic latches, and tightening the screw on the right side of the impulse relay.
- Description: each impulse memory relay is locally controlled by push-buttons (local control); each level or set of impulse memory relays is controlled simultaneously from relevant point (central control).
- Rated operating voltage: AC 250 V .

Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$\mathbf{O D - M I G - C O 1 ~}$	OEZ:43210	0.5	0.030	1

Multi-level central control block OD-MIG-C02

- It enables multi-level central control of relays.
- It contains diodes, which ensure correct transfer of the signal to the impulse relays - see the diagram and connection examples.
- Max. number of MIG impulse relays in a group controlled by 1 piece of OD-MIG-CO2:

$$
-20 \text { pcs (for MIG with } U_{c}=A C 230 \mathrm{~V} \text {) }
$$

$$
-2 \text { pcs (for MIG with } U_{c}^{c}=A C 24 \mathrm{~V} \text {) }
$$

■ Mounting: on „U" rail.

- Description: each impulse memory relay is locally controlled by push-buttons (local control); each level or set of impulse memory relays is controlled simultaneously from relevant point (central control); all levels are jointly controlled by a single command from a point (multi-level central control).
- Rated operating voltage: AC 250 V .

Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
OD-MIG-CO2	0EZ:43211	0.5	0.030	1

Compensation block OD-MIR-BK

- It enables control of the MIG relay up to 50 control push-buttons with glow lamp/LED. With $0.5 \mathrm{~mA} /$ push-button, max. consumption is $50 * 0.5=25 \mathrm{~mA}$.
- Connection: parallel with MIG (compensation block OD-MIR-BK is a common accessory with impulse relay MIR), see page E27.
- Rated voltage: AC 230 V
- Max. voltage: AC 400 V .
- Capacity: $3 \mathrm{x} 1 \mu \mathrm{~F}$.

IMPULSE MEMORY RELAYS MIG

Connection examples

Local control

Each impulse relay is locally controlled by push-buttons.

Local + central control

Each impulse relay is locally controlled by push-buttons (local control); each level or set of impulse relays is controlled simultaneously from relevant point (central control).

Local + central + multi-level central control
Each impulse relay is locally controlled by push-buttons (local control); each level or set of impulse relays is controlled simultaneously from relevant point (central control); all levels are jointly controlled by a single command from a point (multi-level central control).

IMPULSE MEMORY RELAYS MIG

Specifications

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

${ }^{2)}$ Switched power is shown for categories AC-5a a AC-5b in tables on pages E23 and E24
${ }^{3)}$ Information for the case when the relay is excited by a long impulse, although a short impulse is sufficient for the change of the contact condition; in case of the short impulse, the power loss is not applied
${ }^{4}$) Common orientation lighting (glow lamp/LED) on one push-button takes 0.5 mA , altogether it is possible to connect 5 push-buttons with orientation lighting ($5 \times 0.5=2.5 \mathrm{~mA}$).
To increase the number of push-buttons use the OD-MIR-BK compensation block
${ }^{5)}$ The OD-MIG-CO2 block for multi-level central control is necessary to use for multi-level central control. Max. number of MIG impulse relays in a group controlled by 1 piece of OD-MIG-CO2: 20 pcs (for MIG with $U_{c}=230 \mathrm{~V}$) and 2 pcs (for MIG with $U_{c}=24 \mathrm{~V}$)

IMPULSE MEMORY RELAYS MIG

Switching of lights - maximum number of light fittings per one contact at $A C 230 \mathrm{~V}, 50 \mathrm{~Hz}$ (utilization category $A C-5 a, A C-5 b$)
Impulse memory relay

Impulse memory relay	Lighting fitting										
Type	15 W	25 W	40 W	60 W	75 W	100 W	150 W	200 W	300 W	500 W	1000 W
	0.07 A	0.11 A	0.17 A	0.26 A	0.33 A	0.44 A	0.65 A	0.87 A	1.3 A	2.17 A	4.35 A
MIG-20	133	80	50	33	27	20	13	10	7	4	2
MIG-32	233	140	88	58	47	35	23	18	12	7	4
MIG-63	467	280	175	117	93	70	47	35	23	14	7

Maximum total current of sources for LED

Impulse memory relay	
Typ	Max. total current
MIG-20	
MIG-32	6 A
MIG-63	12 A

Maximum number of fluorescent tubes

Impulse memory relay	Uncompensated			Compensated in parallel			DUO connection		
Type	18 W	36 W	58 W	$\begin{gathered} 18 \mathrm{~W} \\ (4,5 \mu \mathrm{~F}) \end{gathered}$	$\begin{gathered} 36 \mathrm{~W} \\ (4,5 \mu \mathrm{~F}) \end{gathered}$	$\begin{aligned} & 58 \mathrm{~W} \\ & (7 \mu \mathrm{~F}) \end{aligned}$	2x 18 W	2x 36 W	2x 58 W
	0.37 A	0.43 A	0.67 A	0.19 A	0.29 A	0.46 A	0.26 A	0.48 A	0.78 A
MIG-20	43	37	24	22	22	14	62	33	21
MIG-32	43	37	24	33	33	21	62	33	21
MIG-63	86	74	48	73	73	47	123	67	41

Maximum number of fluorescent tubes with electronic ballast

Impulse memory relay	With electronic ballast							
Type	18 W	36 W	58 W	80 W	2x 18 W	2x 36 W	2x 58 W	2x 80 W
	0.09 A	0.16 A	0.25 A	0.40 A	0.17 A	0.31 A	0.48 A	0.76 A
MIG-20	67	38	24	15	35	19	13	8
MIG-32	133	75	48	30	71	39	25	16
MIG-63	278	156	100	63	147	81	52	33

Maximum number of high-pressure mercury discharge lamps

Impulse memory relay	Uncompensated							Compensated in parallel						
Type	50 W	80 W	125 W	250 W	400 W	700 W	1000 W	$\begin{aligned} & \hline 50 \mathrm{~W} \\ & (7 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & \hline 80 \mathrm{~W} \\ & (8 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 125 \mathrm{~W} \\ & (10 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 250 \mathrm{~W} \\ & (18 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 400 \mathrm{~W} \\ & (25 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 700 \mathrm{~W} \\ & (40 \mu \mathrm{~F}) \end{aligned}$	$\begin{gathered} 1000 \mathrm{~W} \\ (60 \mu \mathrm{~F}) \end{gathered}$
	0.6 A	0.8 A	1.2A	2.2 A	3.3 A	5.4 A	7.5 A	0.3 A	0.4 A	0.6A	1.2 A	1.8 A	3.4 A	4.8 A
MIG-20	27	20	13	7	5	3	2	14	13	10	6	4	3	2
MIG-32	27	20	13	7	5	3	2	21	19	15	8	6	4	3
MIG-63	53	40	27	15	10	6	4	47	41	33	18	13	8	6

Minia

IMPULSE MEMORY RELAYS MIG

Maximum number of metal halide discharge lamps

Impulse memory relay	Uncompensated							Compensated in parallel						
Type	35 W	70 W	150 W	250 W	400 W	1000 W	2000 W	$\begin{aligned} & 35 \mathrm{~W} \\ & (6 \mu \mathrm{~F}) \end{aligned}$	$\begin{gathered} 70 \mathrm{~W} \\ (12 \mu \mathrm{~F}) \end{gathered}$	$\begin{aligned} & 150 \mathrm{~W} \\ & (20 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 250 \mathrm{~W} \\ & (32 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 400 \mathrm{~W} \\ & (45 \mu \mathrm{~F}) \end{aligned}$	$\begin{gathered} 1000 \mathrm{~W} \\ (85 \mu \mathrm{~F}) \end{gathered}$	$\begin{aligned} & 2000 \mathrm{~W} \\ & (125 \mu \mathrm{~F}) \end{aligned}$
	0.5A	1.0 A	1.8A	3.0 A	4.6A	9.7 A	12.2 A	0.23 A	0.42 A	0.77 A	1.26 A	2.0 A	5.0 A	10.5 A
MIG-20	32	16	9	5	3	2	1	17	8	5	3	2	1	-
MIG-32	32	16	9	5	3	2	1	25	13	8	5	3	2	1
MIG-63	64	32	18	11	7	3	3	55	28	17	10	7	4	

Maximum number of high-pressure sodium discharge lamps

Impulse memory relay	Uncompensated				Compensated in parallel				with electronic ballast			
Type	150 W	250 W	400 W	1000 W	$\begin{aligned} & 150 \mathrm{~W} \\ & (20 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 250 \mathrm{~W} \\ & (32 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & \hline 400 \mathrm{~W} \\ & (45 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & \hline 1000 \mathrm{~W} \\ & (100 \mu \mathrm{~F}) \end{aligned}$	150 W	250 W	400 W	1000 W
	1.8A	3 A	4.4A	10.3 A	0.77 A	1.26 A	2A	5.1A	0.72 A	1.3 A	2A	5 A
MIG-20	13	5	4	1	5	3	2	-	8	5	3	1
MIG-32	13	5	4	1	8	5	3	1	17	9	6	2
MIG-63	27	11	7	3	17	10	7	3	35	19	13	5

Maximum number of low-pressure sodium discharge lamps

Impulse memory relay	Uncompensated						Compensated in parallel					
Type	18 W	35 W	55 W	90 W	135 W	180 W	$\begin{aligned} & \hline 18 \mathrm{~W} \\ & (5 \mu \mathrm{~F}) \end{aligned}$	$\begin{gathered} 35 \mathrm{~W} \\ (20 \mu \mathrm{~F}) \end{gathered}$	$\begin{gathered} 55 \mathrm{~W} \\ (20 \mu \mathrm{~F}) \end{gathered}$	$\begin{gathered} 90 \mathrm{~W} \\ (26 \mu \mathrm{~F}) \end{gathered}$	$\begin{aligned} & 135 \mathrm{~W} \\ & (40 \mu \mathrm{~F}) \end{aligned}$	$\begin{aligned} & 180 \mathrm{~W} \\ & (40 \mu \mathrm{~F}) \end{aligned}$
	0.4 A	0.6A	0.6A	0.9 A	0.9 A	0.9 A	0.35 A	0.28 A	0.35 A	0.55 A	0.8 A	1 A
MIG-20	40	27	27	18	18	18	20	5	5	4	3	3
MIG-32	40	27	27	18	18	18	30	8	8	6	4	4
MIG-63	80	53	53	36	36	36	66	17	17	13	8	8

Switching of resistance or slightly inductive load in $D C$ circuits (utilization category $D C-1(L / R \leq 1 m s))$

Impulse memory relay		Contact load			
Type	Operating voltage U_{e}	1 contact	2 contacts in series	3 contacts in series	4 contacts in series
MIG-20	DC24V	20 A	20 A	-	-
	DC48V	15 A	18 A	-	-
	DC60V	10 A	15 A	-	-
	DC110V	5 A	8A	-	-
	DC220V	0,5 A	4A	-	-
MIG-32	DC24V	32 A	32 A	32 A	32 A
	DC 48 V	25 A	28 A	32 A	32 A
	DC60 V	20 A	22 A	28 A	32 A
	DC110V	7 A	12 A	22 A	25 A
	DC220 V	0,7 A	6A	18 A	20 A
MIG-63	DC24V	63 A	63 A	63 A	63 A
	DC48V	35 A	42 A	63 A	63 A
	DC60V	30 A	34 A	60 A	63 A
	DC110V	10 A	16 A	35 A	63 A
	DC220V	1,2 A	10 A	30 A	63 A

IMPULSE MEMORY RELAYS MIG

Working position

Dimensions

MIG-20

MIG-32 (11, 20)* MIG-32 (31, 40)*
MIG-63

*Arrangement of contacts

Diagram

MIG-..-10-....
MIG-..-11-....
MIG-..-20-....
MIG-..-31-....
MIG-..-40-....

Minia

IMPULSE MEMORY RELAYS MIG

Specifications

Type			PS-MIG-1100	OD-MIG-C01	OD-MIG-CO2
Standards			EN 60947-5-1	EN 60947-5-1	EN 60947-5-1
Approval marks			(5) C C EIL	(5) C C EHL	(5) C C EHI
Contacts					
Arrangement of contacts ${ }^{11}$			11	001	-
Rated thermal current	$\mathrm{I}_{\text {th }}$		6A	-	-
Rated operating voltage	$U_{\text {e }}$		AC 230 V	AC230 V	AC 230 V
Rated operating current	$\mathrm{I}_{\text {e }} \quad \mathrm{AC}-15$	1-phase AC 230 V	6 A	-	-
Rated frequency	f_{n}		50/60 Hz	50/60 Hz	$50 / 60 \mathrm{~Hz}$
Min. switched voltage/current			$12 \mathrm{~V} / 5 \mathrm{~mA}$	-	-
Electrical endurance at I_{e}			100000 operating cycles	-	-
Mechanical endurance			1000000 operating cycles	1000000 operating cycles	-
Power loss at $\mathrm{I}_{\text {e }}$			0.3 W	-	-
Maximum backup fuse gL/gG against short-circuit, coordination type 1			6 A	-	-
Min. distance between open contacts			$>3 \mathrm{~mm}$	-	-
Connection - conductor rigid			$1 \div 4 \mathrm{~mm}^{2}$	$1 \div 4 \mathrm{~mm}^{2}$	$1 \div 4 \mathrm{~mm}^{2}$
Connection - conductor flexible			$1 \div 4 \mathrm{~mm}^{2}$	$1 \div 4 \mathrm{~mm}^{2}$	$1 \div 4 \mathrm{~mm}^{2}$
Torque			0.8 Nm	0.8 Nm	0.8 Nm
Screw type			PZ1	PZ1	PZ1
Screw type					
Rated insulation voltage	U_{i}		AC 440 V	AC 250 V	AC 250 V
Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$		4 kV	-	-
Degree of protection			IP20	IP20	IP20

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Dimensions

PS-MIG-1100
OD-MIG-CO1

OD-MIG-CO2

Diagram

PS-MIG-1100

OD-MIG-C01

OD-MIG-CO2

Minia

Multi-level central control block OD-MIR-CO

- It enables multi-level central control of MIR.
- Rated voltage: AC 230 V .
- Each impulse memory relay is locally controlled by push-buttons (local control); each level or set of im-
pulse memory relays is controlled simultaneously from relevant point (central control); all levels are jointly controlled by a single command from a point (multi-level central control).

Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$\mathbf{O D - M I R - C O}$	OEZ:35677	1	0.05	1

IMPULSE MEMORY RELAYS MIR

Specifications

Type			MIR-16-001-A230
Standards			EN 61812-1
Approval marks			(5) C C EHL
Main circuit (contact)			
Arrangement of contacts ${ }^{112)}$			001
Rated operating voltage	$U_{\text {e }}$		AC250 V
Rated current	I_{n}	AC-1	16 A
		AC-5a	2 A
Max. switched power ${ }^{2)}$			4000 VA
Lamp load max.			$460 \mathrm{~W} / 230 \mathrm{~V}$
Max. fluorescent tube load		compensated $\cos \varphi=0.8$	$8 \times 36 \mathrm{~W}$
		uncompensated $\cos \varphi=0.5$	$25 \times 36 \mathrm{~W}, 13 \times 65 \mathrm{~W}$
Min. switched power			50 mW ($10 \mathrm{~V} / 5 \mathrm{~mA}$)
Rated frequency	f_{n}		50 Hz
Mechanical endurance			10000000 operating cycles
Electrical endurance			100000 operating cycles
Switching frequency			10 operating cycles/min
Connection			$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm
Control circuit			
Rated voltage	$\mathrm{U}_{\text {c }}$		AC230 V
Rated frequency	f_{n}		50 Hz
Min. excitation time			200 ms
Max. excitation time			unlimited
Min. time period between pulses			1 s
Max. number of push-buttons with glow lamp 1.1 mA			15 pcs ${ }^{3)}$
Connection			$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm
Other data			
Mounting on "U" rail according to EN 60715 - type			TH 35
Degree of protection			IP20
Ambient temperature			$-20 \div+50^{\circ} \mathrm{C}$
Working position			Arbitrary
${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts			
${ }^{2)}$ Different contact sequence or load increase can be solved by the use of installation contactors RSI			
${ }^{3)} \mathrm{On} \mathrm{ON}$ input and OFF output there must be the same number of push-buttons with a glow discharge tube. For the number of push-buttons with a glow discharge tube higher than 15 it is necessary to use the compensation block OD-MIR-BK			

Dimensions

MIR-16-001-A230
OD-MIR-BK

OD-MIR-CO

IMPULSE MEMORY RELAYS MIR

Diagram

MIR-16-001-A230

$\uparrow \downarrow \uparrow \downarrow 11$
ON/OFF ON OFF

OD-MIR-BK

$\uparrow \downarrow$

OD-MIR-CO

724

Connection examples
Local control

- Each impulse relay is locally controlled by push-buttons.

Minia

Local + central control

- Each impulse relay is locally controlled by push-buttons (local control); each level or set of impulse relays is controlled simultaneously from relevant point (central control).

Local + central + multi-level central control

- Each impulse relay is locally controlled by push-buttons (local control); each level or set of impulse relays is controlled simultaneously from relevant point (central control); all levels are jointly controlled by a single command from a point (multi-level central control).

Connection of signalling of pushed button

- When the connection of signalling of pushed button is done according to the figure relay can be controlled only by ON/OFF input. In such case of signalling connection when the ON or OFF button is pushed the current is closed through the relay electronics and thus can damage it.

Minia

TIME RELAYS MCR

Multiple-function time relays

- For switching of electric circuits up to 8 A depending on the set time, function and connection.
■ Time range: $0.1 \mathrm{~s} \div 100 \mathrm{hr}$.
- Large number of functions with various control options: delayed operation, impulse after switching on, interval relay starting with pause/impulse, reaction to connecting/disconnecting delay, reaction to connection/disconnection of supply voltage, reaction only to control impulse edge,...
- Universal supply voltage:

AC $12 \div 230 \mathrm{~V} / \mathrm{DC} 12 \div 220 \mathrm{~V}$ (MCR-...-001-UNI),
AC $24 \div 230 \mathrm{~V} / \mathrm{DC} 24 \div 220 \mathrm{~V}$ (MCR-...-003-UNI).

Time and function setting by knobs and change-over switches on the front panel of the device.

- The TEST function making possible permanent changeover of output contacts (check of electric circuit functionality).
- Light indication at contacts closing (yellow LED).
- Light indication of presence of supply voltage (green LED).
- Each impulse led on input TL causes restart of timing depending on the set function.
- In DC circuits the (+) conductor must be connected to terminal A1, and (-) to terminal A2.

Number of functions	Arrangement of contacts ${ }^{1)}$	Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
9	001	MCR-MA-001-UNI	OEZ:43239	1	0.105	1
	003	MCR-MA-003-UNI	$0 E Z: 43240$	1	0.105	1

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Timing relays

■ For periodical switching of electrical circuits up to 8 A according to two mutually independent set times.

- Time range: $0.1 \mathrm{~s} \div 10$ days.
- Universal supply voltage:
$A C 12 \div 230 \mathrm{~V} / \mathrm{DC} 12 \div 220 \mathrm{~V}$.
- Possibility of selection of start of timing - delayed operation / impulse for switching on.
- Light indication at contacts closing (yellow LED).
- Light indication of presence of supply voltage (green LED).
- In DC circuits the (+) conductor must be connected to terminal A1, and (-) to terminal A2.

Arrangement of contacts ${ }^{1)}$	Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
001	MCR-TK-001-UNI	0EZ:43243	1	0.105	1

[^1]
TIME RELAYS MCR

Description of MCR-MA, MCR-MB

Terminals A1-A2 for connection of supply voltage

- Rated voltage $U_{n}: A C / D C 12 \div 230 \mathrm{~V}$ or $\mathrm{AC} / \mathrm{DC} 24 \div 220 \mathrm{~V}$.
- In AC circuits L and N conductors can be arbitrarily connected to terminals A1, A2.
- In DC circuits the (+) conductor must be connected to terminal A1, and (-) to terminal A2.

Knobs for function selection F1-F9

- By means of the knobs it is possible to set the requested function of the time relay $\mathrm{F} 1 \div \mathrm{F} 8$ and TEST (F9).
- In selection of functions $\mathrm{F} 10 \div \mathrm{F} 18$ it is necessary to put the knob to position OFF.

Indication of presence of supply voltage

- Supply voltage presence is indicated by continuously lighting green LED.

Indication of output relay contact closing

- Yellow continuously lighting LED indicates closing of the contact 15-18.

Knobs for function selection F10-F18

- By means of the knobs it is possible to set the requested function of the time relay $\mathrm{F} 10 \div \mathrm{F} 18$.
- In selection of functions F1 \div F9 it is necessary to put the knob to position OFF.
- The MCR-MA design does not contain this knob.

Terminal TL for control of relay

- Control impulse can be excited by connection of A1-TL.
- Min./max. excitation time: 15 ms / unlimited.

Control knobs

- For switching time setting
- upper knob defines time range:
$1 \mathrm{~s}, 10 \mathrm{~s}, 1 \mathrm{~min}, 10 \mathrm{~min}, 1 \mathrm{hr}, 10 \mathrm{hr}, 100 \mathrm{hr}$
- lower knob for setting of a multiple of the time range ($0.1 \div 1$).
minimum set time: 0.1 s maximum set time: 100 hr

Example of time setting:

Description of MCR-TK

Terminals A1-A2 for connection of supply voltage

- Rated voltage $U_{n}: A C / D C 12 \div 230 \mathrm{~V}$.
- In AC circuits L and N conductors can be arbitrarily connected to terminals A1, A2.
- In DC circuits the (+) conductor must be connected to terminal A1, and (-) to terminal A2.

Control knobs t1, t2

- Minimum set time t_{1} or $\mathrm{t}_{2}: 0.1 \mathrm{~s}$.
- Maximum set time t_{1} or $t_{2}: 10$ days.
- Stability of t_{1} and t_{2} set value at permanent power supply - max. $2 \% \mathrm{t}_{1}$ or t_{2}.

Indication of presence of supply voltage

- Supply voltage presence is indicated by continuously lighting green LED.

Indication of output relay contact closing

- Yellow continuously lighting LED indicates closing of the contact 15-18.

Terminal ZP

- For setting of relay start.
- If the terminal is not interconnected, the relay starts in the mode of impulse after switching.
- If the terminal is interconnected with terminal A1, the relay starts in delayed operation mode.

Example of time setting:

TIME RELAYS MCR

Specifications

Type			MCR-MA	MCR-MB	MCR-TK
Standards			EN 61812-1	EN 61812-1	EN 61812-1
Approval marks			(5) $C \in E][$	(5) C E EHL	(5) C CEFIL
Main circuit (contact)					
Arrangement of contacts ${ }^{1)}$			001;003	001;003	001
Rated operating voltage/current	U_{e} / I_{e}	AC-1	$250 \mathrm{~V} / 8 \mathrm{~A}$	$250 \mathrm{~V} / 8 \mathrm{~A}$	$250 \mathrm{~V} / 8 \mathrm{~A}$
		DC-1	$24 \mathrm{~V} / 8 \mathrm{~A}$	$24 \mathrm{~V} / 8 \mathrm{~A}$	$24 \mathrm{~V} / 8 \mathrm{~A}$
Max. switched power		AC-1	2000 VA	2000 VA	2000 VA
		DC-1	192 W	192 W	192W
		AC-3	200 W	200 W	200W
		AC-5b	200 W	200 W	200 W
Max. switched voltage			AC 400 V (5 A)	AC $400 \mathrm{~V}(5 \mathrm{~A})$	AC $400 \mathrm{~V}(5 \mathrm{~A})$
			DC 150 V ($0,3 \mathrm{~A}$)	DC $150 \mathrm{~V}(0,3 \mathrm{~A})$	DC $150 \mathrm{~V}(0,3 \mathrm{~A})$
Max. switched voltage			DC5V/100 mA	DC5V/100 mA	DC5V/100 mA
Indication of closed contact			yellow LED	yellow LED	yellow LED
Mechanical endurance			5000000 operating cycles	5000000 operating cycles	5000000 operating cycles
Electrical endurance			100000 operating cycles	100000 operating cycles	100000 operating cycles
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm	0.5 Nm
Control circuit (coil)					
Rated voltage	$U_{\text {c }}$	type MCR-.....1-...	AC $12 \div 230 \mathrm{~V} / \mathrm{DC} 12 \div 220 \mathrm{~V}$	AC $12 \div 230 \mathrm{~V} / \mathrm{DC} 12 \div 220 \mathrm{~V}$	AC $12 \div 230 \mathrm{~V} / \mathrm{DC} 12 \div 220 \mathrm{~V}$
		type MCR-.....3-...	AC $24 \div 230 \mathrm{~V} / \mathrm{DC} 24 \div 220 \mathrm{~V}$	AC $24 \div 230 \mathrm{~V} / \mathrm{DC} 24 \div 220 \mathrm{~V}$	-
Dwell between applied U_{c}			0.15	0.15	3 s
Consumption		at AC $12 / 230 \mathrm{~V}$	0.7VA / 2.1 VA	0.7 VA / 2.1 VA	0.7 VA / 2.1 VA
		at DC $12 / 220 \mathrm{~V}$	$0.9 \mathrm{~W} / 1.2 \mathrm{~W}$	$0.9 \mathrm{~W} / 1.2 \mathrm{~W}$	$0.9 \mathrm{~W} / 1.2 \mathrm{~W}$
Supply voltage indication			green LED	green LED	green LED
Rated frequency	f_{n}		50 Hz	50 Hz	50 Hz
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm	0.5 Nm
Control impulse					
Excitation ${ }^{2)}$			through interconnection of A1-TL	through interconnection of A1-TL	-
Min. excitation time			15 ms	15 ms	-
Max. excitation time			unlimited	unlimited	-
Consumption		at AC $12 / 230 \mathrm{~V}$	$0.5 \mathrm{VA} / 0.5 \mathrm{VA}$	$0.5 \mathrm{VA} / 0.5 \mathrm{VA}$	-
		at $\mathrm{DC} 12 / 220 \mathrm{~V}$	1W/1W	1W/1W	-
Time circuit					
Range			$0.15 \div 100 \mathrm{hr}$	$0.1 \mathrm{~s} \div 100 \mathrm{hr}$	$0.15 \div 10$ days
Method of setting t			control knobs on the front panel	control knobs on the front panel	control knobs on the front panel
Stability of set value at permanent power supply			max. 2\%t	max. $2 \% \mathrm{t}$	max. $2 \% \mathrm{t}$
Other data					
Mounting on "U" rail according to EN 60715 - type			TH35	TH35	TH35
Degree of protection			IP20	IP20	IP20
Ambient temperature			$-20 \div+55^{\circ} \mathrm{C}$	$-20 \div+55^{\circ} \mathrm{C}$	$-20 \div+55^{\circ} \mathrm{C}$
Working position			arbitrary	arbitrary	arbitrary

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Dimensions

E33

TIME RELAYS MCR

Diagram
MCR-MA-001-UNI MCR-MA-003-UNI
MCR-MB-001-UNI
MCR-MB-003-UNI

Graphs of functions

MCR-MA-...

F1		F4		F7	
F2		F5		F8	
F3		F6		F9	TEST $=$ ON

MCR-MB-...

F1		F7		F13	$\begin{aligned} & U_{n} \\ & T L \\ & R \\ & R \end{aligned}$	
F2		F8		F14	$\begin{aligned} & U_{n} \\ & T L \\ & R \\ & R \end{aligned}$	$\frac{\square}{t \operatorname{tin}_{t}}$
F3		F9	TEST $=\mathrm{ON}$	F15	U_{n} $T L$ R	
F4		F10		F16	$\begin{aligned} & U_{n} \\ & T L \\ & R \end{aligned}$	$\frac{H_{t t t}}{A_{t+1}}$
F5		F11		F17	U_{n} $T L$ R	
F6		F12		F18	U_{n} $T L$ R	

MCR-TK-...

$\mathrm{F}^{\mathrm{A}^{*} 7} \mathrm{ZP}$		A1 ZP			TEST $=\mathrm{ON}$

Note: Letter,„${ }^{\prime \prime}$ in the graphs indicates making of contacts $15-18$, or $25-28$ and $35-38$.

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Timers - standard

- For real time load switching up to $16 \mathrm{~A} / 250 \mathrm{~V}$.
- Change-over switch automatic run / permanent operation / permanent off.

Analog MAN-A

- Daily program.
- Switching time setting: by plastic plates along the perimeter of the knob.
- Shortest switching interval 15 min .
- Run reserve 100 hours.
- Weekly and daily program.

Digital MAN-D

- Switching time setting: by push-buttons on the front panel of the device.
- Shortest switching interval: 1 s .
- Run reserve 5 years, replaceable battery.
- Selection of one of 15 languages including Czech.

Design		Arrangement of contacts 1^{11}	Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
Analog	mini	100	MAN-A16-100-A230-MINI	OEZ:43070	1	0.085	1
	standard	001	MAN-A16-001-A230	OEZ:43071	3	0.155	1
Digital	1-channel	001	MAN-D16-001-A230	OEZ:43072	2	0.173	1
	2-channel	002	MAN-D16-002-A230	OEZ:43073	2	0.197	1

[^2]

Timers Astro

- For real time load switching up to $16 \mathrm{~A} / 250 \mathrm{~V}$.
- Digital-Astro.
- Weekly and daily program.
- Switching time setting: by push-buttons on the front panel of the device.
- Switching on and off at sunrise/sunset.
- Combination of Astro function with switching according to internal clock.
■ Shortest switching interval: 1 s .
- Change-over switch automatic run / permanent operation / permanent off.
- Run reserve 5 years, replaceable battery.
- Selection of one of 15 languages including Czech.

Design	Arrangement of contacts ${ }^{11}$	Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$	
Digital	1-channel	001	MAA-D16-001-A230	0 OEZ:43074	2	0.173	1
	2-channel	002	MAA-D16-002-A230	OEZ:43075	2	0.197	1

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Setting the switching time

- Timer Astro makes it possible to shift the switching on/off time by means of time correction by up to 120 minutes. The contact switching is shifted against the sunset/sunrise by a set time. Time correction does not take into account the different length of twilight in the summer and winter.

- Timer Astro makes it possible to shift the switching on/off time by means of angular correction by up to 12 minutes. The contact switching is shifted against the sunset/sunrise depending on the sun position to the horizon. Angular correction eliminates different length of twilight in the summer and winter. Angular correction enables switching at the same brightness throughout the year.

Example of switching of shop-window lighting

Switching of shop-window lighting, the setting, for example:

- We set the switching on the shop-window lighting 15 minutes before sunset by means of Astro function with manual correction - 15 minutes, so that the shop-window is well illuminated still before dusk.
- To save energy, we set the shop-window switching off at $23: 00$ and switching on at $4: 00$. This setting is on the basis of the internal time of the timer.
- For sunrise, we set the switching off the shop-window lighting by means of the Astro function (without correction).

Accessories

of digital program timers MAN, MAA

- USB adapter for programming the timer by means of PC. Applicable for MAN-D16 and MAA-D16.
- Data key to backup and copy the set program.

Type	Description	Order code	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
OD-MA-USB	USB adapter	OEZ:43077	0.111	1
OD-MA-DK	Data key	OEZ:43076	0.015	1

E36

Minia

TIMERS

Specifications of analog program timer

[^3]
TIMERS

Specifications of digital program timer

		Economical		Standard		Astro	
Type		MAE-D16-001-A230	MAE-D16-002-A230	MAN-D16-001-A230	MAN-D16-002-A230	MAA-D16-001-A230	MAA-D16-002-A230
Standards		EN 60730-1					
		EN 60730-2-7					
Approval marks		(5) C E ER[(5) C CEFIL	(5) C C ERI	(5) C CEIL	(5) C C Ei[(5) C CEFIL
Main circuit (contact)							
Arrangement of contacts ${ }^{1)}$		001	002	001	002	001	002
Rated operating voltage	$U_{\text {e }}$	AC 250 V					
Rated current	$\mathrm{I}_{\text {e }}$	16 A					
Switched power	AC-1	4000 W	4000 W	3680 W	3680 W	3680 W	3680 W
	AC-3	1800 W	1800 W	2000W	2000W	2000 W	2000 W
	AC-5a uncompensated	2500 VA	2500 VA	2000 VA	2000 VA	2000 VA	2000 VA
	AC-5a compensated	$60 \mathrm{~W} / 7$ uF	$60 \mathrm{~W} / 7$ uF	$600 \mathrm{~W} / 70 \mu \mathrm{~F}$			
	AC-5b	1200 W	1200 W	2000 W	2000 W	2000 W	2000 W
Min. switched voltage/current		$12 \mathrm{~V} / 100 \mathrm{~mA}$					
Rated frequency	f_{n}	$50 / 60 \mathrm{~Hz}$					
Mechanical endurance		10000000 operating cycles					
Electrical endurance		100000 operating cycles					
Connection - conductor rigid		$1 \div 4 \mathrm{~mm}^{2}$	$1 \div 4 \mathrm{~mm}^{2}$	$1.5 \div 4 \mathrm{~mm}^{2}$			
Connection - conductor flexible		$0.5 \div 2.5 \mathrm{~mm}^{2}$	$0.5 \div 2.5 \mathrm{~mm}^{2}$	$1.5 \div 2.5 \mathrm{~mm}^{2}$			
Torque		1.2 Nm					
Time circuit							
Min. switching interval		1 min	1 min	1s	1s	1s	1s
Min. time unit		1 min	1 min	1 s	1 s	1 s	1 s
Program		weekly	weekly	weekly	weekly	weekly	weekly
Automatic summer/winter time change		yes	yes	yes	yes	yes	yes
Number of memory places		28	14 on each channel	56	28 on each channel	56	28 on each channel
Pre-set blocks in the week		$\mathrm{Mo}-\mathrm{Su}, \mathrm{Mo}-\mathrm{Fr}$, Sa-Su, individual	Mo -Su, Mo-Fr, Sa-Su, individual	Mo -Su, Mo-Fr, Sa-Su, individual	Mo-Su, Mo-Fr, Sa-Su, individual	Mo-Su, individual	Mo-Su, individual
Run accuracy		± 1 s/day	± 1 s/day	± 0.1 s/day	± 0.1 s/day	± 0.1 s/day	± 0.1 s/day
Run reserve		3 years	3 years	5 years	5 years	5 years	5 years
Battery type		Lithium	Lithium	Lithium	Lithium	Lithium	Lithium
Possibility of battery replacement		yes	yes	yes	yes	yes	yes
Supply circuit							
Rated control voltage $U_{\text {c }}$		AC 230 V					
Operating range		$85 \div 110 \% U_{\text {c }}$	$85 \div 110 \% U_{c}$	$85 \div 110 \% U_{\text {c }}$			
Rated frequency f_{n}		$50 / 60 \mathrm{~Hz}$					
Rated power loss P_{v}		0,9 W	1,3 W	1 W	1,5W	1 W	1,5 W
Connection - conductor rigid		$1 \div 4 \mathrm{~mm}^{2}$	$1 \div 4 \mathrm{~mm}^{2}$	$1.5 \div 4 \mathrm{~mm}^{2}$			
Connection - conductor flexible		$0.5 \div 2.5 \mathrm{~mm}^{2}$	$0.5 \div 2.5 \mathrm{~mm}^{2}$	$1.5 \div 2.5 \mathrm{~mm}^{2}$	$1.5,2.5 \mathrm{~mm}^{2}$	$1.5 \div 2.5 \mathrm{~mm}^{2}$	$1.5 \div 2.5 \mathrm{~mm}^{2}$
Torque		1.2 Nm					
Other data							
Mounting on "U" rails according 60715-type		TH35	TH35	TH35	TH35	TH35	TH35
Degree of protection		IP20	IP20	IP20	IP20	IP20	IP20
Ambient temperature		$-20 \div+55^{\circ} \mathrm{C}$					
Working position		arbitrary	arbitrary	arbitrary	arbitrary	arbitrary	arbitrary

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Dimensions

MAE-A16-100-A230-MINI
MAN-A16-100-A230-MINI

MAE-D16-001-A230

MAN-D16-001-A230

MAE-A16-001-A230
MAN-A16-001-A230

MAE-D16-002-A230

MAN-D16-002-A230

TIMERS

Dimensions

MAA-D16-001-A230

MAA-D16-002-A230

Diagram

MAN-A16-001-A230

MAE-A16-100-A230-MINI MAN-A16-100-A230-MINI

MAE-D16-001-A230 MAN-D16-001-A230

MAA-D16-001-A230

MAE-D16-002-A230
MAN-D16-002-A230 MAA-D16-002-A230

Stair switches MQB-..

- Mainly for control of lighting circuits from more points in a corridor, on stairs, in the whole house etc.
- Possibility of 3 -wire or 4 -wire connection.
- Time setting ($0.5 \div 10 \mathrm{~min}$) by the knob on the front panel of the device.
- Contacts: 1 make.
- Max. 50 control push-buttons with glow lamp 1 mA .
- Warning before expiration of the set time - 20 and 40 seconds before expiration of the set time the stair switch warns by indicator short blinking of oncoming end of timing.
- If the control push-button is pressed longer than 1 s , the stair switch will switch on for a time four times longer than the set time.

Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
MQB-16-100-A230	$0 E Z: 37211$	1	0.086	1

Stair switches MQC-..

- Mainly for control of lighting circuits from more points in a corridor, on stairs, in the whole house etc.
- Possibility of 3-wire or 4-wire connection.
- Time setting ($3 \div 60 \mathrm{~min}$) by the knob on the front panel of the device.
- Max. 50 control push-buttons with glow lamp 1 mA .
- Contacts: 1 make.
- Warning before expiration of the set time - 20 and 40 seconds before expiration of the set time the stair switch warns by indicator short blinking of oncoming end of timing.
- The timing is terminated by pressing the push-button again before 40 seconds to the end of the set time. The timing cycle is restarted by pressing the push-button again 40 or less seconds to the end of the set time.

Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
MQC-16-100-A230	0EZ:37830	1	0.086	1

STAIR SWITCHES

Specifications

Type		MQA-16-100-A230	MQB-16-100-A230	MQC-16-100-A230
Standards		EN 60669	EN 60669	EN 61812-1
		EN 61812-1	EN 61812-1	EN 61812-1
Approval marks		(5) $C \in E[$	(5) C C ER	(5) $C \in E T[$
Main circuit (contact)				
Arrangement of contacts ${ }^{1)}$		10	10	10
Rated operating voltage U_{e}		AC 250 V	AC 250 V	AC 250 V
Rated current I_{n}	AC-1	16 A	16 A	16 A
Inductive load	$\cos \varphi 0,6$	10 A	10 A	10 A
Lamp load max.		2000 W	2000 W	2000 W
Max. fluorescent tube load	uncompensated	20 pcs 58 W	20x58W	20x58W
	compensated in series	40 pcs 58 W	40 pcs 58 W	40 pcs 58 W
	duo-connection	$2 \times 20 \mathrm{pcs} 58 \mathrm{~W}$	2×20 pcs 58 W	$2 \times 20 \mathrm{pcs} 58 \mathrm{~W}$
	EVG $=$ electronic ballast	5 pcs 20 W	5 pcs 20 W	5 pcs 20 W
Min. switched voltage/current		$10 \mathrm{~V} / 300 \mathrm{~mA}$	$10 \mathrm{~V} / 300 \mathrm{~mA}$	$10 \mathrm{~V} / 300 \mathrm{~mA}$
Rated frequency f_{n}		$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Connection		$1.5 \div 6 \mathrm{~mm}^{2}$	$1.5 \div 6 \mathrm{~mm}^{2}$	$1.5 \div 6 \mathrm{~mm}^{2}$
Torque		1.2 Nm	1.2 Nm	1.2 Nm
Control circuit				
Rated control voltage $\mathrm{U}_{\text {c }}$		AC 230 V	AC 230 V	AC 230 V
Range of control voltage		$90 \div 110 \% U_{\text {c }}$	$90 \div 110 \% \mathrm{U}_{\text {c }}$	$90 \div 110 \% \mathrm{U}_{\text {c }}$
Rated frequency f_{n}		50 Hz	50 Hz	50 Hz
Power loss	at idle state	0.7W	1W	1 W
	at timing process	3.5 W	1.7 W	1.7 W
Time setting		$0.5 \div 10 \mathrm{~min}$	$0.5 \div 10 \mathrm{~min}$	$3 \div 60$ min
Min. excitation time		30 ms	30 ms	30 ms
Max. excitation time ${ }^{2)}$		unlimited	unlimited	unlimited
Max. number of push-buttons with glow lamp 1 mA		50 pcs	50 pcs	50 pcs
Reset by next impulse		yes	yes	yes
Additional extension of the set time		no	yes ${ }^{3 /}$	no
Warning before end of timing		no	yes ${ }^{4}$	yes ${ }^{4)}$
Connection		$1.5 \div 6 \mathrm{~mm}^{2}$	$1.5 \div 6 \mathrm{~mm}^{2}$	$1.5 \div 6 \mathrm{~mm}^{2}$
Torque		1.2 Nm	1.2 Nm	1.2 Nm
Other data				
Mounting on"U" rail according to EN 60715 - type		TH35	TH35	TH35
Degree of protection		IP20	IP20	IP20
Ambient temperature		$-10 \div+50^{\circ} \mathrm{C}$	$-10 \div+50^{\circ} \mathrm{C}$	$-10 \div+50^{\circ} \mathrm{C}$
Working position		arbitrary	arbitrary	arbitrary

[^4]${ }^{2)}$ The device is able to withstand permanent load either in switching the manual change-over switch on the front panel of the device or in control push-button locking
${ }^{3}$ If the control push-button is closed for more than 1 s , the set time is extended four times
$\left.{ }^{4}\right) 20$ and 40 seconds before expiration of the set time the stair switch warns by indicator short blinking of oncoming end of timing

STAIR SWITCHES

Dimensions

MQA-16-100-A230, MQB-16-100-A230, MQC-16-100-A230

Connection examples

Stair switch is controlled by switching of the phase conductor. This connection is used mainly in new installations.

Diagram
MQA-16-100-A230
MQB-16-100-A230
MQC-16-100-A230

Stair switch is controlled by switching of the N -conductor. This connection is used only in old installations.

Graph

MONITORING RELAY

Voltage monitoring relays MMR-U3

- For overvoltage, undervoltage, phase failure monitoring.
- The relay is equipped with an output make-and-break contact 8 A .
- It can be also used for one-phase circuits.
- Overvoltage and undervoltage monitoring can be switched off separately. Then the relay reacts only to phase failure only.
- Light indication of presence of supply voltage (green LED).
- Light indication at contacts closing (red LED).

Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
MMR-U3-001-A230	0EZ:43244	1	0.091	1

Voltage monitoring relays MMR-X3

- For overvoltage, undervoltage, phase failure, phase sequence and asymmetry monitoring.
■ The relay is equipped with an output make-and-break contact 8 A .
- Overvoltage, undervoltage and asymmetry monitoring can be switched off separately. Then the relay reacts only to phase sequence and phase failure only.
- Light indication of presence of supply voltage (green LED).
- Light indication at contacts closing (red LED).

Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
MMR-X3-001-A230	0EZ:43245	1	0.091	1

MONITORING RELAY

Description of MMR-U3

Terminals L1, L2, L3 and N for connection of the monitored voltage

- $\mathrm{U}_{\mathrm{c}}: \mathrm{AC} 230 / 400 \mathrm{~V}$.
- In 1-phase application, connect the terminals L1, L2 and L3.

Indication of presence of supply voltage

- Supply voltage presence is indicated by continuously lighting green LED.

Error indication

- Red LED.
- 1 blink... error in phase 1 .
- 2 blinks... error in phase 2.
- 3 blinks... error in phase 3.

Description of MMR-X3

Terminals L1, L2, L3 and N for connection of the monitored voltage
$-\quad$ ■ $: A C 230 / 400 \mathrm{~V}$

Indication of presence of supply voltage

- Supply voltage presence is indicated by continuously lighting green LED.

Error indication

- Red LED.
- 1 blink... error in phase 1.
- 2 blinks... error in phase 2.
- 3 blinks... error in phase 3 .

Minia

MONITORING RELAY

Specifications

Type			MMR-U3	MMR-X3
Standards			EN 60255-56	EN 60255-56
			IEC 61010	IEC 61010
Approval marks			(5) C E ER	(5) C C ERI
Main circuit (contact)				
Arrangement of contacts ${ }^{11}$			001	001
Rated operating voltage/proud	U_{e} / I_{e}	AC-1	$250 \mathrm{~V} / 8 \mathrm{~A}$	$250 \mathrm{~V} / 8 \mathrm{~A}$
Max. switched power		AC-1	2000 VA	2000 VA
		AC-3	200W	200 W
		AC-5b	200 W	200 W
Max. switched voltage			AC 400 V	AC 400 V
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm
Mechanical endurance			3000000 operating cycles	3000000 operating cycles
Electrical endurance			10000 operating cycles	10000 operating cycles
Supply circuit				
Rated voltage	$U_{\text {c }}$		AC 230 V	AC 230 V
Input power			max. 1.5 VA	max. 1.5 VA
Supply voltage indication			green LED	green LED
Rated frequency	f_{n}		50 Hz	50 Hz
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm
Measuring circuit				
Monitored voltage			AC 230/400 V	AC $230 / 400 \mathrm{~V}$
Error indication			red LED	red LED
Adjustable delay			$0 \mathrm{~s} \div 10 \mathrm{~s}$	$0 \mathrm{~s} \div 10 \mathrm{~s}$
Adjustable undervoltage level			$180 \div 220 \mathrm{~V}$	$180 \div 220 \mathrm{~V}$
Adjustable overvoltage level			$225 \div 265 \mathrm{~V}$	$225 \div 265 \mathrm{~V}$
Adjustable value of asymmetry			-	$5 \div 20 \%$
Method of setting			control knobs on the front panel	control knobs on the front panel
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm
Other data				
Galvanic isolation	input		4 kV	4 kV
Mounting on "U" rail according to EN 60715 - type			TH35	TH35
Degree of protection			IP20	IP20
Ambient temperature			$-20 \div+55^{\circ} \mathrm{C}$	$-20 \div+55^{\circ} \mathrm{C}$
Working position			arbitrary	arbitrary

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

Dimensions

MMR-U3-...

MMR-X3-...

MONITORING RELAY

Diagram

MMR-U3-...

MMR-X3-...

Graph

Monitoring of overvoltage and undervoltage MMR-U3, MMR-X3

Phases failure monitoring MMR-U3, MMR-X3

Monitoring of phase sequence MMR-X3

Asymmetry monitoring MMR-X3

MONITORING RELAY

Priority current relays

- They monitor the strength of current in the circuit and close/open the contact (terminals 1, 2) at a jump exceeding of a guaranteed switched current.
- They make it possible to interrupt the power supply of one (non-priority) circuit, if the current of the other (priority) circuit jumps to a set value.
- They are most frequently installed in distribution systems where concurrent operation of more appliances is not possible because of risk of exceeding a permitted power input.
- For example, the relays can disconnect electric heating, a storage block heater from the network if an instan-
taneous water heater is switched - therefore it is possible to select a main circuit breaker and conductors for a lower power input.
- They make it possible to increase the number of appliances for existing installations.
- In the circuits with electronic (e.g. thyristor) control, they cannot be used directly, but with a time-delay relay - see connection examples.
- Maximum current through the current coil: depending on design $15 \mathrm{~A}, 28 \mathrm{~A}, 63 \mathrm{~A}$.
- Maximum current through the contact: 16 A .

Operating current range I_{n}	Arrangement of contacts ${ }^{1)}$	Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$5 \div 15 \mathrm{~A}$	01	RLP-15-01	OEZ:35548	1	0.115	1
$\div \div 28 \mathrm{~A}$	10	RLP-15-10	OEZ:35549	1	0.115	1
	01	RLP-28-01	OEZ:35550	1	0.115	1

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

Specifications

Type			RLP-..
Approval marks			(5) C E ER[
Contact (terminals 1,2)			
Arrangement of contacts ${ }^{1)}$			10,01
Rated voltage/current	AC-1	U_{e} / I_{n}	AC $250 \mathrm{~V} / 16 \mathrm{~A}$
Electrical endurance			75000 operating cycles
Switching frequency			max. 1200 operating cycles/hr
Connection			$0.75 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.8 Nm
Current coil (terminals A1, A2)			
Operating current range		I_{n}	$5 \div 15 \mathrm{~A}, 10 \div 28 \mathrm{~A}, 26 \div 63 \mathrm{~A}$
Guaranteed switched current for $\mathrm{I}^{2}{ }^{2)}$	operating current range $5 \div 15 \mathrm{~A}$		$\geq 5 \mathrm{~A}$
	operating current range $10 \div 28 \mathrm{~A}$		$\geq 10 \mathrm{~A}$
	operating current range $26 \div 63 \mathrm{~A}$		$\geq 26 \mathrm{~A}$
Guaranteed unswitched current for $\mathrm{I}_{\mathrm{n}}{ }^{2 /}$	operating current range $5 \div 15 \mathrm{~A}$		$\leq 2 \mathrm{~A}$
	operating current range $10 \div 28 \mathrm{~A}$		$\leq 6 \mathrm{~A}$
	operating current range $26 \div 63 \mathrm{~A}$		$\leq 16 \mathrm{~A}$
Connection - terminals A1, A2			$0.75 \div 16 \mathrm{~mm}^{2}$
Torque			2 Nm
Power loss			3 W
Other data			
Isolation voltage		U_{i}	AC400 V
Mounting on "U" rail according to EN 60715 - type			TH35
Degree of protection			IP20
Ambient temperature			$-20 \div 50^{\circ} \mathrm{C}$
Working position			arbitrary
${ }^{1)}$ Each digit indicates successively the number of make and break contacts ${ }^{2)}$ Only for jump increase in current			

Selection RLP-.. according to power output of the switched appliance

Appliance				type RLP-..
Voltage	Power output [kW]			
AC 230 V	$1.2 \div 3.4$	RLP-15-..		
	$2.3 \div 6.4$	RLP-28-..		
AC400V	$6.0 \div 14.5$	RLP-63-..		

MONITORING RELAY

Dimensions

RLP-..

Diagram

RLP-..-10

A2 2

RLP-..-01

A2 2

Connection examples

- Example of blocking of current taking by electrical heating: In case of switching an instantaneous water heater (priority appliance) the guaranteed switching current of the priority relay is exceeded, and its contact opens. The coil of the contactor RSI loses voltage, and opens the power contacts, by which it disconnects the electrical heating, thus reducing overall current consumption.

- Example of blocking of consumption by a load with electronic control:

In this case the function of the relay can be disturbed by the electronic control (the relay switches in the rhythm of the electronic control). For this reason we recommend connecting a time relay with a delayed function in the circuit of the control contact. In case of switching a load the guaranteed switching current of the priority relay is exceeded, and its contact closes. This will start the time relay, and disconnects the contactor coil for a preset time.

Analog residual current monitor 5SV8000-6KK

Local signalling

- First LED signals functionality of the relay and current transformer:
LED is lighting - the relay is in order
LED does not light - the relay is not supplied
LED is blinking - interrupted connection between the relay and the transformer, or broken secondary winding.
- The second LED signals magnitude of the passing current: LED is lighting - signalling reach of 100% residual current LED is blinking - blinking period increases with increasing residual current.
- Mounting on „U" rail.
- Measurement by means of external summation current transformer.
- Circuit breaker switching off by means of shunt trip or undervoltage release.

Type	Order code	Description	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$\mathbf{5 S V 8 0 0 0 - 6 K K}$	OEZ:42658	Analog, setting $\mathrm{I}_{\Delta n}$ and $\mathrm{t}_{\Delta \mathrm{n}}$	2	0.180	1

Diagram

Wiring diagram with a shunt trip

Wiring diagram with an undervoltage release

Diagram description

Symbol	Description
\mathbf{J}	miniature circuit breaker
RCM	monitoring relay
TEST	test push-button of the relay
RESET	local reset push-button
EXT. STOP/RESET	remote reset push-button or STOP push-button ${ }^{11}$
S1,S2	terminals of current transformer
Q3	protection of relay LPN-2C-1

[^5]
Minia

Digital residual current monitor 5SV8001-6KK

- Designed for monitoring of leakage current (residual/fault current) and protection against fire e.g. due to worsened insulation or sneak currents.
- Possibility of setting of residual current $I_{\Delta n}$ and setting of maximum inactivity time $I_{\Delta t}$ by means of push-buttons and the display (see table).
- Presentation of cause of trip and of current value of residual current on the display.

Local signalling

- The first LED signals functionality of the relay and trip in reach of the set residual current:
LED gives a green light - the relay is supplied
LED gives a red light - signalling of reach of 100% residual current
- The second LED signals reach of relative low set value: LED gives a yellow light - signalling of reach of the set value.
- Mounting on „U" rail.
- Measurement by means of external transformer.
- Circuit breaker switching off by means of shunt trip or undervoltage release.
- Possibility of setting of characteristic S - selective.

Remote signalling

- By means of make-and-break contact (CO).
- Serves for signalling of reach of the set value of $I_{\Delta n}$ and/or for circuit breaker switching off via undervoltage release or shunt trip.
- Possibility of remote switching off by applying voltage AC/DC $110 \div 230 \mathrm{~V}$ on potential free terminals number 1 and 2.
- The TEST push-button serves for testing of the function of both the relay and circuit breaker - disconnects the circuit.
- If the relay trips (switches the circuit breaker off) it is necessary to reset it by the „RESET" push-button, or interrupt its supply and thus perform the remote reset.
- The setting can be sealed.

Type	Order code	Description	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$\mathbf{5 S V 8 0 0 1 - 6 K K}$	OEZ:42659	Digital, setting $\mathrm{I}_{\Delta \mathrm{n}}$ and $\mathrm{t}_{\Delta \mathrm{n}}$	3	0.260	1

Diagram

Wiring diagram with a shunt trip

Wiring diagram with an undervoltage release

Diagram description

Symbol	Description
J	miniature circuit breaker
RCM	monitoring relay
TEST	test push-button of the relay
RESET	local reset push-button
EXT. STOP/RESET	remote reset push-button or STOP push-button
S1, S2	terminals of current transformer
ALARM	signalling of I $_{\text {ond }}$ adjusted value reaching
Q3	protection of relay LPN-2C-1

Diagram

Wiring diagram with a shunt trip

 - connection of miniature circuit breakers
Digital residual current monitor 5SV8200-6KK

- Designed for monitoring of leakage current (residual/fault current) and protection against fire e.g. due to worsened insulation or sneak currents.
- Possibility of setting of residual current $I_{\Delta n}$ and setting of maximum inactivity time $I_{\Delta t}$ by means of pushbuttons and the display (see table).

Local signalling

- The first LED signals functionality of the relay and trip in reach of the set residual current:
LED gives a green light - the relay is supplied
LED gives a red light - signalling of reach of 100% residual current
- The second LED signals reach of relative low set value: LED gives a yellow light - signalling of reach of the set value.
- Presentation of cause of trip and of current value of residual current on the display.
- Mounting on „U" rail.
- Measurement by means of external transformer, it is possible to connect up to 4 transformers.
- Circuit breaker switching off by shunt trip.
- Possibility of setting of characteristic S - selective.

Remote signalling

- By means of make-and-break contact (CO).
- Serves for signalling of reach of the set value of I_{Ln} and/or for circuit breaker switching off via undervoltage release or shunt trip.
- Possibility of remote switching off by applying voltage $A C / D C 110 \div 230 \mathrm{~V}$ on potential free terminal number 12 .
- The TEST push-button serves for testing of the function of both the relay and circuit breaker - disconnects the circuit.
- If the relay trips (switches the circuit breaker off) it is necessary to reset it by the „RESET" push-button, or interrupt its supply and thus perform the remote reset.
- The setting can be sealed.

Type	Order code	Description	Number of modules	Weight $[\mathrm{kg}]$	Package [pcs]
$\mathbf{5 S V 8 2 0 0 - 6 K K}$	0EZ:42660	Digital, setting lann^{2} and t_{nn}, 4-channel thermostat	3	0.260	1

- connection of current transformer

Description schématu

Symbol	Description		Symbol	Description	
	J	miniature circuit breaker		RESET	local reset push-button
RCM	monitoring relay		EXT. STOP/RESET	remote reset push-button or STOP push-button	
TEST	test push-button of the relay	S1, S2	terminals of current transformer		

[^6]MONITORING RELAY

Specifications

Type	5SV8 000-6KK	5SV8 001-6KK	5SV8 200-6KK
Standards	EN 62020	EN 62020	EN 62020
	IEC 62020	IEC 62020	IEC 62020
Approval marks	(5) C C EFL	(5) C E EL	(5) C C ER
Number of independent circuits	1	1	4
Rated residual current	$0,03 \div 5 \mathrm{~A}$	$0,03 \div 30 \mathrm{~A}$	$0,03 \div 30 \mathrm{~A}$
Maximum inactivity time	$0.02 \div 5 \mathrm{~s}$	$0.02 \div 10 \mathrm{~s}$	$0.02 \div 10 \mathrm{~s}$
Type	A (up to $\mathrm{I}_{\text {n }}=3 \mathrm{~A}$)	A (up to $\mathrm{I}_{\text {n }}=3 \mathrm{~A}$)	A (up to $\mathrm{I}_{\text {nn }}=3 \mathrm{~A}$)
	AC ($1 \mathrm{Ln}^{\text {od }} 3$ up to 5 A)	$\mathrm{AC}\left(\mathrm{I}_{\text {n }}\right.$ od 3 up to 30 A$)$	$\mathrm{AC}\left(\mathrm{Ian}^{\text {od }} 3\right.$ up to 30 A$)$
Rated operating voltage U_{e}	AC 230 V	AC 230 V	AC 230 V
Operating voltage range	AC $164 \div 284 \mathrm{~V}$	AC $164 \div 284 \mathrm{~V}$	AC 164 $\div 284 \mathrm{~V}$
Rated frequency f_{n}	50 Hz	50 Hz	50 Hz
Input power	3 VA	6 VA	6 VA
Mounting on "U" rail according to EN 60715 - type	TH 35	TH 35	TH 35
Degree of protection - on the front panel	IP41	IP41	IP41
Degree of protection - of conductors terminal	IP20	IP20	IP20
Other specifications			
External remote trip/reset	-/yes	yes/yes	yes/yes
Local signalling reaching of relative low value $\mathrm{I}_{\mathrm{n} \mathrm{n}}$ (ALARM)	yes	yes	yes
Remote signalling reaching of relative low value $\mathrm{I}_{\text {In }}$ (ALARM)	-	yes	yes
Local signalling:supply ALARM Failure value $_{\text {I }}$	yes	yes	yes
	-	yes	yes
Sealing of control panel setting	yes	yes	yes
Transformer internal diameter	$30 \div 210 \mathrm{~mm}$	$30 \div 210 \mathrm{~mm}$	$30 \div 210 \mathrm{~mm}$
Max. length of conductors to the transformer (screened conductor)	10 m	10 m	10 m
Control circuit (inputs - external switching off / reset)			
Rated operating voltage $\mathrm{U}_{\text {c }}$	-	AC/DC $110 \div 230 \mathrm{~V}$	AC230V
Operating voltage range	-	AC/DC $110 \div 284 \mathrm{~V}$	AC $230 \div 284 \mathrm{~V}$
Input power	-	0.7W	0.7 W
Control circuit (outputs)			
Arrangement of contacts ${ }^{1)}$	001	002	40
Rated operating voltage U_{e}	AC 230 V	AC230 V	AC230V
Rated current $\mathrm{I}_{\text {e }}$	6 A	6 A	6 A
Max. switched power - AC-1	1500 VA	1500 VA	1500 VA
Electrical endurance	10x 106 operating cycles	10x 106 operating cycles	10x 106 operating cycles
Rated frequency	50 Hz	50 Hz	50 Hz
Connection			
Connection - conductor Cu - rigid (solid, stranded) ${ }^{1)}$	$0.2 \div 2 \mathrm{~mm}^{2}$	$0.2 \div 2 \mathrm{~mm}^{2}$	$0.2 \div 2 \mathrm{~mm}^{2}$
Torque	$0.5 \div 0.6 \mathrm{Nm}$	$0.5 \div 0.6 \mathrm{Nm}$	$0.5 \div 0.6 \mathrm{Nm}$
Operating conditions			
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-10 \div+50^{\circ} \mathrm{C}$	$-10 \div+50^{\circ} \mathrm{C}$	$-10 \div+50^{\circ} \mathrm{C}$
Relative humidity	$5 \div 95 \%$	$5 \div 95 \%$	$5 \div 95 \%$
Max. sea level	2000 m	2000 m	2000 m

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

MONITORING RELAY

Dimensions

Residual current monitor 5SV8000-6KK

Residual current monitor 5SV8001-6KK, 5SV8200-6KK

Measuring current transformers 5SV8700-0KK, 5SV8701-0KK

Type	A	B	C	D
5SV8700				

5SV8700-OKK	60	20	46	24

5SV8701-OKK	70	30	59	30

Measuring current transformers 5SV87...-OKK

Type	A	B	C	D	E	F	G	H
5SV8702-OKK	100	79	26	49	35	35	43	6.5
5SV8703-0KK	130	110	32	66	70	52	57	6.5
5SV8704-0KK	170	146	38	94	105	72	73	6.5
5SV8705-0KK	230	196	49	123	140	97	98	6.5
5SV8706-OKK	299	284	69	161	210	141	142	6.5

E54

Minia

MONITORING RELAY

Description

Indication of presence of supply voltage

- Supply voltage presence is indicated by continuously lighting green LED.

Indication of signal-to-noise ratio or relay closing

- Yellow LED.
- Insufficient signal-to-noise ratio - blinking.
- Relay closed - lights.

Terminals Max, Min and GND for probe connection

- Range $0 \div 10$ s step 1 s .
- It can be switched off.

Sensitivity setting

- $5 \div 100 \mathrm{k} \Omega$

Setting of function

- UP . . . liquid filling.
- Down ... liquid drawing off.

Dimensions

MMR-HL-...

Diagram
MMR-HL-...

Wiring diagram

Graph
Level monitoring MMR-HL-001-A230

Minia

	Thermistor relay For the control the basis of m tor, which is b	re of wind esistanc otor.	on mis-	After exceeding the value of the thermistor resistance $3.3 \mathrm{k} \Omega$ the relay switches over the contact. The reswitching is only possible after the thermistor resistance decrease $1.8 \mathrm{k} \Omega$ in three ways: - by pressing the RESET push-button - by pressing the remote RESET push-button connected to terminals T1-R1 - by automatic RESET (it is necessary to connect terminals T1 and R1).	
	Type	Order code	Number of modules	Weight [kg]	Package [pcs]
	MMR-T1-001-A230	0EZ:43247	1	0.091	1

Specifications

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

MONITORING RELAY

Description

Indication of presence of supply voltage

- Supply voltage presence is indicated by continuously lighting green LED.

Indication of contact switching over

- Contact switching over is indicated by red LED.

Terminal R1 for remote/automatic reset

Terminals L and N for connection of supply voltage

- $U_{c}: A C 230 \mathrm{~V}$.

Terminals T1 and T2 for probe connection
Probes are included in the engine.
\qquad

Minia

MONITORING RELAY

Thermal probes

- Accessory for MMR-T2 and MMR-TD.
- Temperature probe OD-MMR-T3N - standard temperature probe with plastic cap for use up to max. temperature of 100°. Cable length 3 m .
- Temperature probe OD-MMR-T3S - temperature probe with metallic cap and silicon supply cable for use up to max. temperature of $150^{\circ} \mathrm{C}$. Cable length 3 m .

Type	Order code	Cord Lenght	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
OD-MMR-T3N	0EZ:43725	3 m	0.050	1
OD-MMR-T3S	0EZ:33726	3 m	0.05	1

Minia

MONITORING RELAY

Description MMR-T2

Indication of presence of supply voltage

- Supply voltage presence is indicated by blinking green LED.

Indication of contact switching over

- Contact switching over is indicated by yellow LED and green LED for contact 1 and contact 2 respectively.

Terminals L and N for connection of supply voltage

- $U_{c}: A C 230 \mathrm{~V}$.

Description of MMR-TD

Indication of presence of supply voltage

- Supply voltage presence is indicated by blinking green LED.

Indication of contact
switching over

- Contact switching over is indicated by yellow and green LED.

Operating states of MMR-T2, MMR-TD

E60

MONITORING RELAY
Specifications

Type			MMR-T2	MMR-TD
Standards			EN 60255-56	EN 60255-56
			IEC 61010	IEC61010
Approval marks			(5) C C Ei[(5) C E EHL
Main circuit (contact)				
Arrangement of contacts ${ }^{1)}$			200	200
Rated operating voltage/current	U_{e} / I_{e}	AC-1	250V/16A	$250 \mathrm{~V} / 16 \mathrm{~A}$
Max. switched power		AC-1	4000 VA	4000 VA
		AC-3	1 kW	1 kW
		AC-5a	$288 \mathrm{~W}(\cos \varphi=0,8)$	$288 \mathrm{~W}(\cos \varphi=0,8)$
		AC-5b	1 kW	1 kW
Max. switched voltage			AC400 V	AC 400 V
Indication of contact state			green/yellow LED	green/yellow LED
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm
Mechanical endurance			3000000 operating cycles	3000000 operating cycles
Electrical endurance			10000 operating cycles	10000 operating cycles
Supply circuit				
Rated voltage	U		AC 230 V	AC 230 V
Input power			max. 1.5 VA	max. 1.5 VA
Supply voltage indication			green LED is blinking	green LED is blinking
Rated frequency	f_{n}		50 Hz	50 Hz
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm
Measuring circuit				
Error indication			green/yellow LED is blinking	green/yellow LED is blinking
Adjustable delay			$0 \mathrm{~s} \div 10 \mathrm{~s}$	$0 \mathrm{~s} \div 10 \mathrm{~s}$
Adjustable undervoltage level ${ }^{2)}$			$180 \div 220 \mathrm{~V}$	$180 \div 220 \mathrm{~V}$
Adjustable overvoltage level ${ }^{2)}$			$225 \div 265 \mathrm{~V}$	$225 \div 265 \mathrm{~V}$
Temperature measuring range			$-25 \div+95^{\circ} \mathrm{C}$	$-25 \div+95^{\circ} \mathrm{C}$
Method of setting			control knobs on the front panel	control knobs on the front panel
Connection - conductor rigid and flexible			$0.2 \div 2.5 \mathrm{~mm}^{2}$	$0.2 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.5 Nm
Other data				
Galvanic isolation	input/output		4 kV	4 kV
	input/probes		4 kV	4 kV
	output/probes		4 kV	4 kV
Mounting on "U" rail according to EN 60715 - type			TH35	TH35
Degree of protection			IP20	IP20
Ambient temperature			$-20 \div+55^{\circ} \mathrm{C}$	$-20 \div+55^{\circ} \mathrm{C}$
Working position			arbitrary	arbitrary

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

Dimensions

MMR-T2-...

MMR-TD-...

Diagram

MMR-T2-...

Wiring diagram

MMR-TD-...

MMR-T2, MMR-TD

Minia

MONITORING RELAY

Graphs of functions

The function of the double thermostats MMR-T2 200-A230

The function of the differential thermostat MMR-TD-200-A230

[^0]: ${ }^{1)}$ Each digit indicates successively the number of make and break contacts

[^1]: ${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

[^2]: ${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contact

[^3]: ${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

[^4]: ${ }^{1)}$ Each digit indicates successively the number of make and break contacts

[^5]: ${ }^{1}$) STOP push-button only in combination with an undervoltage release

[^6]: S
 ALAPM Description
 Q3 signalling of $\mathrm{I}_{\text {} n}$ adjusted value reaching protection of relay LPN-2C-1

